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Abstract. When a simple excitable system is continuously stimulated by a Poissonian external source,
the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This
is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic
range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity
of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle
a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction
among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since
the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-
free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of
disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic
range is maximum when the coupling among the elements is critical, corroborating a general reasoning
recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse
than that of random networks, for special SF networks which lack loops the enhancement of the dynamic
range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer
function we propose a simple model in which the density of loops in the network can be gradually increased,
and show that this is accompanied by a gradual decrease of dynamic range.

PACS. 87.19.La Neuroscience – 87.18.Sn Neural networks – 89.75.Hc Networks and genealogical trees
89.20.-a Interdisciplinary applications of physics

1 Introduction

Recent applications of tools from Statistical Physics have
brought about new perspectives to theoretical Neuro-
science. On the one hand, networks of simplified neuron
models seem to capture essential features of collective neu-
ronal dynamics [1–5], very often being also amenable to
analytical calculations via mean field approximations or
Fokker-Planck equations [6–8]. On the other hand, ex-
perimental data from real neural networks have yielded
extremely interesting results when analyzed within the
framework of complex networks, often revealing the small-
world character for structural (i.e. anatomical) connec-
tivity in different spatial scales [9–11], as well as scale-
free characteristics for functional connectivity both in
in vitro [12] and in fMRI [13,14] data (see [15] for a recent
review).

In the context of modelling, one intriguing question
in Neuroscience regards the stunning ability that brains
have to cope with sensory stimuli that vary over many or-
ders of magnitude [7]. The experimental evidence support-
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ing this claim has been accumulating for about a century
in the Psychophysics literature: the perception of a given
stimulus grows with a power law of the stimulus intensity
(Stevens law), with an exponent (Stevens exponent) which
is typically <1, implying low-stimulus amplification and
large dynamic range [16]. This is in stark contrast with the
poor performance of single neurons: as a function of the
stimulus intensity, the mean firing rate of sensory neurons
experimentally shows the linear saturating shape that one
expects for general excitable systems, so their responses
consistently have a small dynamic range, typically about
one or two decades only [17–20]. How can these two exper-
imental results be reconciled? A solution which has been
proposed for this apparent paradox involves a collective
phenomenon. The idea is that if excitable elements with
small dynamic range are coupled, signal propagation in
the network amplifies the average activity, as compared
to that of an isolated node. This collectively leads to a
significant enhancement of dynamic range, thus providing
a possible solution to a problem faced by biological as well
as artificial sensors: how to code for several orders of mag-
nitude of stimulus intensity, starting from narrow-coding
elements [2–4,6,7].
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The reasoning underlying the enhancement of dy-
namic range is very general and applies to essentially any
network topology. Consider the limit of very weak stimu-
lus, where each excitable element has a small probability
of being excited. By coupling the elements, a single stimu-
lus event will be amplified to neighboring sites, which will
further amplify it, and so forth. If the coupling strength
is small, this excitable wave will eventually die out, but
the overall network activity (the response to the stimu-
lus) will still be larger than that of the isolated element
that originally received the stimulus. The larger the cou-
pling strength, the larger the amplification, and so the
sensitivity and the dynamic range of the response curve
initially increase with coupling. There is, however, a crit-
ical value of the coupling above which self-sustained ac-
tivity becomes stable. Above this (typically second order)
nonequilibrium phase transition, the response of the net-
work for weak stimulus is hindered, because it is masked
by the self-sustained activity of the network. This gets
worse and worse as the coupling increases, so above criti-
cality the dynamic range of the response curve decreases
with increasing coupling strength. Therefore, the dynamic
range is optimal at criticality [7].

The above mechanism has been tested in regu-
lar [2–4,6] as well as random [7] networks of excitable el-
ements. The maximum enhancement in dynamic range is
about 100% in one-dimensional networks [6] and 50% in
random graphs [7]. It is not a priori clear how the perfor-
mance depends on the network topology and, in particu-
lar, which one gives the best results. Given the potential
applications of the mechanism to artificial sensors, as well
as the relevance to Neuroscience, in this paper we study
the performance of a scale-free topology in the dynamic
range problem. We show that a particular class of scale-
free networks, those with no loops, yield the best perfor-
mance known so far. We investigate the role of loops on
the dynamic range by introducing a slightly modified ver-
sion of the Barabási-Albert scale-free model where we can
now tune the amount of loops in the network.

The paper is organized as follows. In Section 2 we in-
troduce the model and give a precise definition of the dy-
namic range. Results are discussed in Section 3 for the
standard Barabási-Albert scale-free model (3.1) as well as
for a slightly modified “loop-diluted” version that we in-
troduce (3.2). Our concluding remarks are presented in
Section 4.

2 The model

We consider a variant of the Greenberg-Hastings cellular
automaton [21], which is one of the simplest models of
an excitable system and can be used in large-scale sim-
ulations. In the model, each excitable node i = 1, . . . , N
could represent either a neuron, an active dendritic patch
or even sub-cellular excitable processes. Each node can be
in one of n states: xi = 0 is the quiescent state (e.g. a po-
larized neuron), xi = 1 is the excited state (e.g. a spiking
neuron) and xi = 2, . . . , n − 1 are refractory states (e.g.
a hyperpolarized neuron). Once a site is excited (xi = 1),

it deterministically goes through the next n − 2 refrac-
tory states, after which it jumps to the quiescent state
xi = 0 (the automaton is therefore cyclic [22]). Each node
is independently excited by a stochastic external source,
which mimics the effect of an stimulus on the lattice. We
model the arrival of a suprathreshold stimulus by a Pois-
son process with rate r: at each time step τ an attempt
to stimulate a site occurs with probability

λ = 1 − exp(−rτ) (1)

(we adopt the arbitrary time scale of τ = 1 ms, which
is the characteristic time scale of a neuronal spike). We
refer to the rate r as the stimulus intensity. In order to
become excited in time t + τ a given site has to be in
state 0 at time t. There are two different ways by which a
site can be excited: by the continuous stimulation of the
external source (with probability λ per time step) or by
stimulus propagation from its excited neighbors. Thus the
probability that a quiescent site i is excited in the next
time step is

Pi(t + τ) = 1 − (1 − λ)
ki∏

j=1

(1 − pij)δ(xj(t), 1), (2)

where δ(a, b) is the Kronecker delta, ki is the number of
neighbors (connectivity or degree) of site i and pij is the
probability that excitation from site j gets transmitted
to site i. There is quenched disorder in the coupling: the
probabilities pij are initially drawn from a uniform dis-
tribution in [0, 2σ/K] if 2σ/K < 1, or [2σ/K − 1, 1] if
2σ/K > 1, where K = 〈k〉 is the mean connectivity of the
network and σ is the coupling parameter (for simplicity, we
consider the case of bidirectional coupling pij = pji). Note
that, in a mean field approximation, σ coincides with the
branching ratio, defined as the average of the number of
descendant excitations divided by the number of ancestor
excitations of each site. Such mean field approximation
provides a quite satisfactory agreement with simulation
results for random graph topologies (as expected) and ac-
curately predicts a phase transition at σc = 1 [5,7].

The mean firing rate of the network is defined as
F ≡ T−1

∑T
t ρt, where ρt ≡ N−1

∑N
i δ(xi(t), 1) is the

instantaneous density of active (excited) sites and T is
a given time window for measurements (we have used
N = 104, T = 104 steps and n = 5 states in most sim-
ulations). We refer to F (r) as the response function (or
transfer function) of the network. It typically shows the
sigmoidal shape in a log-linear scale exemplified in Fig-
ure 1a, with a baseline activity F0 ≡ limr→0 F (r) and
saturation at Fmax ≡ limr→∞ F (r). The dynamic range
∆ of the response function is defined as the width (mea-
sured in dB) in stimulus intensity r which can be “ap-
propriately coded” by F . In the biological literature, this
is usually operationalized as follows [17,18]: by letting
Fx ≡ F0 + x(Fmax − F0), where 0 ≤ x ≤ 1, and rx be
the corresponding stimulus intensity, (F (rx) = Fx, see
triangles in Fig. 1a for an example), the dynamic range is
defined as

∆ = 10 log10

(
r0.9

r0.1

)
, (3)
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Fig. 1. (a) Response functions for BA scale-free networks with
m = 10: mean firing rate F versus stimulus rate r. Different
curves denote different values of the branching parameter σ:
from bottom to top, σ = 0.1, 0.3, . . . , 1.9. Filled circles: σ = 0.5,
which is close to the critical value. The horizontal lines exem-
plify how the dynamic range ∆ is calculated for σ = 1.9 (filled
triangles). (b) Log-log version of (a). The dashed line shows an
exponent 1/2. Inset: self-sustained activity F0 versus σ, illus-
trating the phase transition close to σc � 0.5.

therefore excluding stimuli whose response is just above
baseline (r < r0.1) or too close to saturation (r > r0.9). For
an isolated Greenberg-Hastings excitable node, one can
easily show that the dynamic range is ∆ � 19 dB [4,6].

3 Results

3.1 Barabási-Albert networks

We consider scale-free networks [23] of such excitable el-
ements. Several investigations show that distinct systems
such as World-Wide Web [23], scientific [24], metapopula-
tion dynamics [25,26] and biochemical networks [27,28]
self-organize into a scale-free configuration [29], which
means that the probability Pk that a given node has k
edges follows a power-law distribution like

Pk ∝ k−γ . (4)

Measurements in real systems estimate γ in the
range [2, 3]. Equation (4) basically means that poorly-

connected nodes are most frequent in the network than
well-connected nodes (hubs).

To establish scale-free networks, we follow the stan-
dard algorithm by Barabási and Albert (BA) [23], which
regards preferential attachment and growth as mecha-
nisms for the emergence of the scale-free character. In this
algorithm, the resulting networks display connectivity dis-
tribution according to Pk ∝ k−3. The parameters of the
BA model are the number of nodes N and m, which cor-
responds to the number of links that a newly introduced
node adds to the network. These m links are most proba-
bly attached to those nodes with an already large number
of edges.

Figure 1 shows the results for m = 10. For small val-
ues of σ, the response function F (r) increases linearly for
weak stimulus. This linearity can be easily interpreted:
each stimulus arrival generates an excitable wave that will
have a finite lifetime and will die before another wave is
created. For stronger stimulus (larger r) linearity breaks
down, since there is interaction among waves, which par-
tially annihilate each other. For very large r, the firing
rates reach a saturation value which scales with the inverse
of the refractory period, Fmax = 1/n [2–4]. As the value
of σ increases, so does the lifetime of an excitable wave,
leading to larger amplification of weak stimuli and a cor-
responding enhancement of dynamic range (see Fig. 2 for
σ � 0.5). When σ = σc, the lifetime of the excitable waves
effectively diverges and the system undergoes a second or-
der phase transition (notice the change in the exponent in
the filled circles of Fig. 1b). For σ > σc, any perturbation
in the network will lead to a stable self sustained activity,
F0 > 0 (inset of Fig. 1b) which, as explained in section 1,
leads to smaller values of the dynamic range as the cou-
pling increases [7] (see Fig. 2 for σ � 0.5).

One observes that, differently from random graph
topologies [7], the transition for scale-free excitable net-
works occurs at σc < 1. We speculate that this is due to
the hubs, which have a local branching ratio σi =

∑ki

j pij

larger than unit even for σ < 1 and could therefore fa-
cilitate the transition. It is also interesting to note that
deviations from mean field behavior have been predicted
for the contact process (CP) in a scale-free network [30].
Apart from the refractory period and the disorder, the CP
is similar to the model we study here (in the sense that
it has a unique absorbing state with no symmetries). In
Fig. 1, however, the response exponent at criticality (de-
fined by F (r; σc) ∼ r1/δh) seems to be compatible with
the mean field value 1/δh = 1/2 [22].

Results in Figure 1 are typical, similar curves are ob-
tained for any m > 1. The performance of these scale-
free networks in enhancing the dynamic range is poor:
while the dynamic range of isolated excitable elements is
∆(σ = 0) � 16.7 dB, the network (optimal) performance
at criticality is only ∆(σc) � 20.8 dB, an enhancement
of less than a decade. This is slightly worse than the en-
hancement produced by random networks with equivalent
size and average connectivity, as can be seen in the curves
∆(σ) of Figure 2.
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Fig. 2. Dynamic range ∆ versus branching parameter σ for dis-
tinct network topologies: BA scale-free networks (open circles)
and Erdős-Rényi random graphs (filled circles) with approxi-
mately the same mean connectivity. Inset: Response function
for BA scale-free networks with m = 1 and σ = 2 for N = 104

(filled circles) and N = 3 × 104 (open circles). The solid line
shows a slope �0.07.

The case m = 1, however, is particularly interesting.
Notice that in this situation the network is still scale-free,
but does not comprise any loop in its structure and con-
sequently has a tree-like pattern. This condition, together
with the deterministic nature of each excitable node after
excitation, prevents the phase transition to self-sustained
activity from occurring [1], a fact that has also been ob-
served in one-dimensional excitable networks [6]. In these
conditions the only transition occurs at σ = σmax = K
(=2m for scale-free networks), whereby propagation of ex-
citable waves becomes deterministic (ballistic). Therefore
low-stimulus amplification increases steadily with σ, but
in the absence of self-sustained activity (F0 = 0). This
allows the dynamic range to increase monotonically with
σ, reaching values near 50 dB, which is the largest value
obtained so far in excitable network models.

3.2 Loop-diluted model

As we observe a remarkable difference between the dy-
namic range of scale-free networks with m = 1 and other
values of m, and the former has a typical feature (non-
existence of loops) which is not present in m > 1 topolo-
gies, we are interested in investigating the role of loops in
the response functions of the networks. For this purpose,
we propose a variant of the BA model which is referred
to as loop-diluted model. In the model each new node is
added according to the usual preferential attachment rule,
but can have m = 1 or m = 2 links according to the prob-
ability distribution

P (m) = (1 − p)δm,1 + pδm,2, (5)

where p is the probability of having two edges. So p adjusts
the amount of loops in the network and the case p = 0
recovers the structure with no loops. The mean degree is
now K = 2 〈m〉 = 2(1 + p).
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Fig. 3. Occurrences of 3- and 4-site patterns in the
loop-diluted scale-free networks (filled symbols) and their
randomized counterparts (open symbols). (a) number of tri-
angles versus p and (b) number of squares versus p. Points
(bars) represent the mean (standard deviation) over 5 realiza-
tions for N = 1000. Patterns are sequentially numbered (1–8)
for further reference in the text.

Notice that, since all sites belong to a single giant com-
ponent, the average number of loops created by each newly
added site is bounded from below by p. Each new two-
edged node can give rise to loops of any size, but the re-
lationship between parameter p and the number of loops
becomes already apparent in a simple 3-site motif analy-
sis [31]. Figure 3a shows the mean number of triangles as
a function of p (calculated by the free software available
at www.weizman.ac.il/mcb/UriAlon). As expected, this
is a monotonically increasing function, which nevertheless
stays well below Np, hinting that most loops comprise
more than three sites. The same qualitative scenario is
observed when we plot the number of squares (Fig. 3b),
which are more abundant than triangles. In both cases,
we notice that for equally sized randomized graphs (which
preserve the degrees of every node [31]), the numbers of
triangles and squares are considerably larger. This means
that triangles and squares are actually anti-motifs in the
loop-diluted model [32]. In fact, this is true for all patterns
that contain loops (numbered 2, 5, 6 and 8 in Fig. 3), ex-
cept for pattern 7, which cannot occur according to the
growth rules of the model. The occurrences of patterns 1,
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3 and 4 in the loop-diluted model and in the randomized
networks are statistically indistinguishable (therefore they
are neither motifs nor anti-motifs — data not shown).

Figure 4 displays the dynamic range ∆ as a function
of the coupling σ for some values of p. From the figure,
we clearly notice that the insertion of loops by increas-
ing the probability p has a striking effect on the dynamic
range. This effect is already mensurable for values of p
such that pN ∼ 1. The peak value of the dynamic range
∆max(p) ≡ maxσ ∆(σ; p) = ∆(σc(p); p) seems to decrease
logarithmically with p.

4 Concluding remarks

Recently, some investigations have addressed the enlarge-
ment in average activity of excitable elements by coupling
these entities and so giving form to a new larger and more
sensitive unit. Although this collective phenomenon has
been widely accepted, little is known about the way the
arrangement of connections among the excitable elements
acts physically on the system dynamics. The creation
of more robust and functional units from smaller units
(whose pattern of interactions is a determining aspect) is
of course not exclusive of Neuroscience. For instance, the
hypercycle, a catalytic feedback network whereby each el-
ement helps the replication of the next one in a regulatory
cycle closing on itself, has been pondered as an alterna-
tive resolution for the information crisis in prebiotic evolu-
tion [33,34]. We believe that all the recent contributions on
this issue have a bearing on a more general context, that
is, the understanding of the interplay between system dy-
namics and the underlying interaction network topologies.
We hope that our contribution gives a small step in this
direction, when we corroborate that the amount of loops
in network structure could be a key topological feature.

We have presented simulation results for the transfer
function of excitable scale-free networks. The behavior of
the dynamic range ∆ as a function of the coupling σ shows

the general behavior predicted in reference [7]: in the sub-
critical regime (σ < σc) ∆(σ) increases, while in the su-
percritical regime (σ > σc) ∆(σ) decreases. The maximum
value is obtained at criticality, but for scale-free networks
with m > 1 this result is even smaller than that for a
random graph.

For m = 1 the phase transition to self-sustained activ-
ity disappears, and the dynamic range increases steadily,
reaching its maximum value when excitable waves become
deterministic. This suggests that the presence of loops in
the network could be a relevant feature in determining
the dynamic range of its transfer function. We have intro-
duced a simple extension to the BA scale-free model which
allows one to interpolate between m = 1 and m = 2,
showing that dynamic range decreases as the density of
loops increases. This reinforces the need to study other
topologies with tree structure, which abound in biological
structures.

It remains at present unclear whether the response ex-
ponent for m > 1 is indeed compatible with the mean field
universality class (even though this seems to be supported
by recent simulation results in reference [35], which inde-
pendently addressed a similar problem). Also, for m = 1
at maximum coupling, the response function seems to be
governed by a power law with a much smaller exponent
(see inset of Fig. 2) which might not belong to the di-
rected percolation universality class. We believe that a
detailed study of the critical exponents of excitable scale-
free networks is still lacking and should be dealt with in
the future.

M.C. and P.R.A.C. are supported by Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico (CNPq), FACEPE
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